
Two-point statistics on multifractal analysis of resonant states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 2857

(http://iopscience.iop.org/0953-8984/4/11/013)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 00:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter4(1992)2857-2864. Printedin the UIC 

Two-point statistics on multifractal analysis of resonant 
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Abstract. I n  order to characterize the resonant stater described earlier by Bas" era1 (1991), 
we carry out the analysis of the two-point statistics on the mulrifractal measure associated 
with the transmittance of these states. We clearly demarcate the two regions to which the 
localized and the resonant states belong. 

1. Introduction 

It is well known that electronic states in tight-binding one-dimensional chains with 
nearest-neighbour overlap are exponentially localized. However, there is evidence of 
the existence of transmitting stochastic resonances (Azbel 1983a, b, 1984. Azbel and 
Rubinstein 1983, Pendry 1982a. b, 1984,1986,1987, Pendry and Kirkman, 1984,1986, 
Godin and Haydock, 1988, Basu er a1 1991). Pendry (1987) suggested that these trans- 
mitting states could be necklace states; that is, a superposition of localized states centred 
at different points and spanning the chain. Basu et a1 (1991) have looked at the trans- 
mittance as a function of the chain length [T(L, E )  versus L ]  and have noticed the 
necklace-like behaviour suggested by Pendry. The transmittance at the stochastic res- 
onances shows a rich internal structure. In this communication we propose to examine 
this behaviour in some detail. 

We note first that the T(L,  E)  or Itp(L, E)Iz as functions of L differ in detail for 
different resonances for the same chain configuration or different chain configurations. 
Compare, for example, figures 2(a) and (b ) .  One may, of course, inspect them directly 
one by one. The whole object of this communication is to suggest a method which will 
allow us to examine, not these individual differences, but the common characteristics 
resonant states. In particular, we wish to examine the question: are resonances due to 
special localized states peaked at the chain centre (as originally suggested by Azbel) or 
are resonant states necklace states (as suggested by Pendry)? To examine the clumped, 
multipeaked behaviour of T(L,  E )  versus L curves, it is necessary to study the two point 
correlation functions on the probability measure defined on the chain. Knowledge 
of such correlations is useful in understanding the internal structure of multifractal 
measures. Lee and Halsey (1990) and Meneveau and Chhabra (1990) have suggested a 
generalization of the usual multifractal analysis. They define a functionf(cu, CY', U) ,  This 
allows us to examine the probability of finding pairs of sites with singularity strength a 
and a' at a distance r = om (a is the bin size = I,", assumed). 
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2. Formalism 

In a narrow wire of length N described by the Anderson TB Hamiltonian, we have 
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N N 

ffsampk = 2 E " 9 1 h .  + v 2 ( V h " + l  + 91h.-l). (1) 
" = I  "=I 

At the two ends of the chain at n = 1 and n = N we attach elementary perfectly con- 
ducting semi-infinite leads. We used the recursion technique with single site transfer 
matrices (Liu and Chao 1986) to find the transmittance T(E)  and reflectance R(E)  at 
different energies. At the stochastic resonances T(E)  = 1 and R(E)  = 0. At these ener- 
gies the transmittance is observed along the length for a sample of size 3 x lo4. 

We define the correlation of transmittances between any two points on the chain at 
a distance r: 

1 %-' 

v r = 1  
C(r)  = - 2 T(i)  T(i + r )  (2) 

where Vis the volume of the sample and equals N for a one-dimensional chain. C(r) 
gives the correlation between pairs of points at a distance r from each other. This should 
reflect clumped or necklace-like behaviour, if there is any, and clearly distinguish 
between localieddecayingstatesand necklace resonant states peaked at different points 
on the chain. This is a property which will clearly distinguish between extended and 
localized states also. 

We define a generalized normalized measure, obtained from transmittances at dif- 
ferent points, as 

p ( i )  = ~ p ( i ) ~ q ( i  + r ) ] / [ ~  P(i)Tq(i + r) 1 . [ i 
(3) 

Then, following Lee and Halsey (1990), we define 

The probability of finding the two scaling exponents a' and a" at a distance r is 
p(m, a', r)  = Nfla.o'.w)-Do 

log P(a, e', r )  = If(., a', w )  - Do] log(Rr). 

f(cu:. a', w )  = - 2 l i ~ )  logp(i)/log(N) 

( 5 )  

(6) 

where w = -log(r)/log(N) and Do is the fractal dimension at q = 0 

As Do and Nare constants,f(cu, a', U )  gives information about the probability. 
m 

(7) 
,=1 

r is always less than N, so w is always less than 1. Hence 0 < 1 - w < 1. Plotting 



Two-point stutistics on multifractal analysis 2859 

Energy 

Figure 1. Transmittance versus energy for a chain of size 30000. (a) E = -0.3344; (b )  E = 
0.0086. 

f(a, a', w) versus (1 - w), we expect to get an idea of how the probability of the IY and 
a' sets (occurring at distances r )  behave. We shall try to understand the resonant states 
from this viewpoint. 

3. Results and discussions 

Figures I(u) and (b) give the transmittance versus energy curve for two different resonant 
states for a system of length 30000. These resonances occur at (a) E = -0,3344 and (b)  
E = 0.0086. The resonance is sharp with the width decreasing with size (Basu eta/ 1991). 

Figures 2(a) and ( b )  show transmittance versus length for the two different res- 
onances shown in figure 1. It has been suggested by Pendry (1987) that the resonant 
states have a necklace-like structure resembling localized clumps centred at different 
sites but overlapping. The transmittance (reflecting this behaviour) has clumped struc- 
tures in it. As is seen, the clumped structures are not periodic. 
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Length 

Figure 2. Transmittance versus length for resonances (a) a1 E = -0.3344; (b)  E = 0.0086. 

In order to analyse the nature of these resonant states we study the two-point 
correlation function C(r).  Figure 3(a) shows the two point correlation function C(r) 
versus r ,  the distance between any two points in the measure, for a localized state 
(broken curve) and the resonant state at E = -0.3344 (full curve). 

For the localized state the transmittance falls off exponentially w8ith length. So with 
increasing r ,  the correlation between T(i) (=\(,I2) and T(i + r )  decreases. As no two 
points are significantly correlated to each other, the curve falls off sharply with an 
increase in r. 

For the resonant state, C(r) falls off slowly with r ,  exhibiting prominent oscillations. 
This behaviour is a common feature of resonant states. Figure 3(b) showa C(r) versus r 
for the two different resonant states described in figures l ( a )  and (b). Although the 
curves differ in detail, the general oscillatory decay is a common feature. 

For small r ,  T(i) and T(i + r )  represent transmittances for two nearby points in the 
same clump and are strongly correlated for a significant fraction of sites i. As r is 
increased, this correlation, as well as the number of sites for which this correlation is 
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Figure 3. Correlation function C(r) versus r for (a )  B localued state (broken curve) and a 
resonant state at E = -0.3344 (full curve); ( b )  the two resonant states at E = -0.3344 (full 
curve) and at E = O.M)86 (broken curve). 

significant, decreases. For a particular r ,  say, the points of the first clump may not be 
altogether correlated to subsequent points at a distance r. However, two of the sub- 
sequent clumps may be such that points in them are strongly correlated at the same r. 
From (2), C(r) has a summation in it, so all points separated by that rcontribute to C(r) 
which has a significant value. The signature of this extra correlation shows up in a much 
slower decay in C(r). The inhomogeneous distribution of the clumped structure is 
responsible for the initial slow fall of C(r). As rincreases, the correlation between points 
far apart naturallydecreases. lfthe transmittance hasaclumped, necklace-likestructure, 
for some specific large values of r we may again have significant correlation between 
points belonging to different clumps. This is reflected in the oscillatory behaviour of 

Our aim is to characterize the resonant states and distinguish them clearly from 
extended and localized states. For this, we shall look at a particular generalized measure 
y', which is the f i  defined before withp = -4. 

C(r).  
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With this definition, 

p* = [T-q(i)Tq(i + r ) ]  T-q( i )P( i  + r ) ] .  

For an extended state p* = [(l/N)-s(l/N)q]/[tn(l/N)-9(1/N)q] = l / m .  We have 

so 
taken m = 15000 when N = 30000. 

f(a,  n’, w) = Xp*(i)  logp*(i)/log(l/N) = 1. 

Figure 4(a) showsf(a, a‘, w) versus (1 - w )  for extended (full curve), localized 
(dotted curve) and resonant (broken curve) states. f(a,  n‘, w) may be interpreted as 
=log P(n, e‘, r )  from (6) where P(n, CY’, r )  is the probability of finding CY and a’ at 
a distance r. 

As seen from the figure, for the extended state, the probability of n and a’ existing 
at r is always -1. For the resonant state, because of its clumped nature spread all over 
the system, there is no gap in the measure (transmittance) and sof(n, a‘, w) cannot fall 
to zero as r increases, as discussed by Lee and Halsey (1990). For localized states, the 
transmittance exists up to points which fall wzithin the localization length. After that the 
transmittance for the rest of the length scales is negligible. As r increases T(i + r )  Q T(i) 
and sop* decreases. From (7) it is clearly visible that as p’ decreases,f(a, e‘, w) also 
decreases. 

In order to distinguish better between the extended and resonant states in figure 
4(b), weshowf(n, E’,  w)versus(l - w)in anextendedscale. Here, asisclearlyvisible. 
the resonant state is not exactly like an extended state. It has some localized property 
incorporated in it such that it also has a tendency to fall off after some sufficiently large 
r values. 

Figure 4(c) shows the same for a resonant state (full curve) and a localized state 
(broken curve). Here, the r variation for the resonant state curve is made very large. 
Even then,f(n, e’, w) decreases but does not fall off to zero. As resonant states have a 
gapless transmittance spread throughout the system this isvery much expected (Lee and 
Halsey 1990). 

In order to make sure that the signature of the resonant states are not specific to a 
particularresonance, we havecompared thesamecurvesfor the twodifferent resonances 
described in figures l(a) and (b). This is shown in figure 4(d). From this figure we see 
that although the exact specific values are slightly different for the two different states, 
the general nature of the curves is very similar. 

We could clearly demarcate the two different scaling regions to which the Azbel and 
localized states belong. This is very similar to the works of Meneveau and Chhabra and 
Lee and Halsey on a different model Cantor set. The two-point statistics method 
of multifractal measures is, according to us, a very good method of distinguishing 
transmittances at different scaling regions. 
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